Back to Search Start Over

Effects of Two Organic Wastes in Combination with Phosphorus on Growth and Chemical Composition of Spinach and Soil Properties.

Authors :
Maftoun, M.
Moshiri, F.
Karimian, N.
Ronaghi, A. M.
Source :
Journal of Plant Nutrition. Sep2004, Vol. 27 Issue 9, p1635-1651. 17p.
Publication Year :
2004

Abstract

Most agricultural soils in Iran are usually low in organic matter (OM). Therefore, increasing OM in these soils is of great concern. Environmental pollution caused by chemical fertilizers has created an interest in the integrated use of organic wastes with inorganic fertilizers. The main purpose of this greenhouse study was to evaluate the impact of two organic wastes and phosphorus (P) on the growth, and elemental composition of spinach (Spinacia oleracea L.) and soil chemical properties. Treatments consisted of four levels of municipal waste compost, MWC (0, 1, 2, and 4%), five rates of poultry manure, PM (0, 1, 2, 3, and 4%), and three P levels (0, 25, and 50 mg kg−1 as KH2PO4). Application of P and MWC alone or in combination significantly increased the top dry weight of spinach. However, spinach growth was markedly increased up to 3% PM and suppressed with the higher rate, probably due to an excess of soluble salts in the soil. Moreover, the enhancing influence of P on spinach seedling growth was more pronounced at lower levels of MWC and PM. Plant P concentration tended to increase with increasing P, MWC, and PM application rates, whereas nitrogen (N) concentration was only affected by the two organic wastes treatment. Manganese (Mn) concentrations decreased, and copper (Cu), lead (Pb), and cadmium (Cd) increased by soil P application. However, P addition significantly decreased zinc (Zn) concentration only in MWC-treated spinach. Spinach plants enriched with either of the two biosolids accumulated more Mn, Zn, Pb, Cd, chloride (Cl), and sodium (Na) than control plants. Furthermore, spinach grown on MWC-amended soil contained higher Mn, Zn, Cu, and Pb and lower N, Cl, and Na than those raised on PM-treated soil. Postharvest soil sampling indicated that application of the two biosolids significantly increased concentration of soluble salts, (ECe), OM, TN, NaHCO3-extractable P, and DTPA-extractable iron (Fe), Mn, Zn, Cu, Pb, and Cd. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01904167
Volume :
27
Issue :
9
Database :
Academic Search Index
Journal :
Journal of Plant Nutrition
Publication Type :
Academic Journal
Accession number :
14184559
Full Text :
https://doi.org/10.1081/PLN-200026005