Back to Search Start Over

Protective immunity elicited by the nematode-conserved As37 recombinant protein against Ascaris suum infection.

Authors :
Versteeg, Leroy
Wei, Junfei
Liu, Zhuyun
Keegan, Brian
Fujiwara, Ricardo T.
Jones, Kathryn M.
Asojo, Oluwatoyin
Strych, Ulrich
Bottazzi, Maria Elena
Hotez, Peter J.
Zhan, Bin
Source :
PLoS Neglected Tropical Diseases. 2/13/2020, Vol. 14 Issue 2, p1-17. 17p.
Publication Year :
2020

Abstract

Background: Ascaris lumbricoides is one of the three major soil-transmitted gastrointestinal helminths (STHs) that infect more than 440 million people in the world, ranking this neglected tropical disease among the most common afflictions of people living in poverty. Children infected with this roundworm suffer from malnutrition, growth stunting as well as cognitive and intellectual deficits. An effective vaccine is urgently needed to complement anthelmintic deworming as a better approach to control helminth infections. As37 is an immunodominant antigen of Ascaris suum, a pig roundworm closely related to the human A. lumbricoides parasite, recognized by protective immune sera from A. suum infected mice. In this study, the immunogenicity and vaccine efficacy of recombinant As37 were evaluated in a mouse model. Methodology/Principal findings: As37 was cloned and expressed as a soluble recombinant protein (rAs37) in Escherichia coli. The expressed rAs37 was highly recognized by protective immune sera from A. suum egg-infected mice. Balb/c mice immunized with 25 μg rAs37 formulated with AddaVax™ adjuvant showed significant larval worm reduction after challenge with A. suum infective eggs when compared with a PBS (49.7%) or adjuvant control (48.7%). Protection was associated with mixed Th1/2-type immune responses characterized by high titers of serological IgG1 and IgG2a and stimulation of the production of cytokines IL-4, IL-5, IL-10 and IL-13. In this experiment, the AddaVax™ adjuvant induced better protection than the Th1-type adjuvant MPLA (38.9%) and the Th2-type adjuvant Alhydrogel (40.7%). Sequence analysis revealed that As37 is a member of the immunoglobulin superfamily (IgSF) and highly conserved in other human STHs. Anti-As37 antibodies strongly recognized homologs in hookworms (Necator americanus, Ancylostoma ceylanicum, A. caninum) and in the whipworm Trichuris muris, but there was no cross-reaction with human spleen tissue extracts. These results suggest that the nematode-conserved As37 could serve as a pan-helminth vaccine antigen to prevent all STH infections without cross-reaction with human IgSF molecules. Conclusions/Significance: As37 is an A. suum expressed immunodominant antigen that elicited significant protective immunity in mice when formulated with AddaVax™. As37 is highly conserved in other STHs, but not in humans, suggesting it could be further developed as a pan-helminth vaccine against STH co-infections. Author summary: Ascaris infection is the most common infection of humans living in poverty worldwide and can result in malnutrition and stunted physical and mental development in children. A preventive vaccine is urgently needed as a complementary approach to anthelmintic deworming to increase the efficiency of STH infection control. To develop a vaccine against Ascaris infection, an immunodominant antigen, As37 of A. suum, was cloned and expressed as a soluble recombinant protein in E. coli. The recombinant As37 protein (rAs37) was highly recognized by protective immune sera from A. suum infected mice. Balb/c mice immunized with 25 μg rAs37 formulated with the adjuvant AddaVax™ showed significant larval worm reduction against challenge with A. suum infective eggs when compared to a PBS (49.7%) or adjuvant control (48.7%). Protection was associated with a mixed Th1/2-type immune response characterized by high titers of serological IgG1 and IgG2a and stimulation of the production of cytokines IL-4, IL-5, IL-10 and IL-13. The AddaVax™ adjuvant induced better protection than the Th1-type adjuvant MPLA (38.9%) and the Th2-type adjuvant Alhydrogel (40.7%). Sequence analysis revealed that As37 was a member of the immunoglobulin superfamily (IgSF) and highly conserved in other human STHs. Anti-As37 antibodies strongly recognized homologs in hookworms (Necator americanus, A. ceylanicum, A. caninum) and in the whipworm T. muris, but there was no cross-reaction with human spleen tissue extracts. These results indicate that the nematode-conserved As37 protein could be developed as a pan-helminth vaccine antigen to prevent all STH infections without reacting with human IgSF molecules. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19352727
Volume :
14
Issue :
2
Database :
Academic Search Index
Journal :
PLoS Neglected Tropical Diseases
Publication Type :
Academic Journal
Accession number :
141725400
Full Text :
https://doi.org/10.1371/journal.pntd.0008057