Back to Search
Start Over
Combined Road Roughness and Vehicle Parameter Estimation Based on a Minimum Variance Unbiased Estimator.
- Source :
-
International Journal of Structural Stability & Dynamics . Jan2020, Vol. 20 Issue 1, pN.PAG-N.PAG. 32p. - Publication Year :
- 2020
-
Abstract
- This paper deals with the simultaneous identification of road roughness and vehicle parameters, considering the effect of vehicle–structure interaction. The proposed technique avoids the use of bridge response data (which has practical implementation difficulties along with the high chances of corruption with environmental noises) and utilizes the vehicle response data (which is relatively easier to record). Further, vehicle calibration is not needed as the roughness is estimated simultaneously. The identification is carried out by the coupling of an unbiased minimum variance estimator with an optimization scheme. This study considers a quarter-car vehicle model and a half-car vehicle model, instrumented to measure the vehicle vibration data. The unbiased minimum variance estimator (MVE) allows a linear temporal evolution of the state variables, incorporating the roughness as an unknown input term such that the need for linearization is avoided, unlike the traditional nonlinear filters. The optimization scheme helps in choosing a set of optimal solutions for the vehicle parameters as designed in the coupled scheme. The best split of the available measurement data to be used in the two schemes (MVE and optimization scheme) is discussed. The effect of different objective functions is also studied. The proposed technique is successful in terms of simultaneously estimating the vehicle parameters, roughness profile and vehicle responses (states) accurately. [ABSTRACT FROM AUTHOR]
- Subjects :
- *MINIMUM variance estimation
*PARAMETER estimation
*VEHICLE models
Subjects
Details
- Language :
- English
- ISSN :
- 02194554
- Volume :
- 20
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- International Journal of Structural Stability & Dynamics
- Publication Type :
- Academic Journal
- Accession number :
- 141683823
- Full Text :
- https://doi.org/10.1142/S0219455420500133