Back to Search Start Over

Testing Impact Measures in Spatial Autoregressive Models.

Authors :
Anselin, Luc
Arbia, Giuseppe
Bera, Anil K.
Doğan, Osman
Taşpınar, Süleyman
Source :
International Regional Science Review. Jan-Mar2020, Vol. 43 Issue 1/2, p40-75. 36p.
Publication Year :
2020

Abstract

Researchers often make use of linear regression models in order to assess the impact of policies on target outcomes. In a correctly specified linear regression model, the marginal impact is simply measured by the linear regression coefficient. However, when dealing with both synchronic and diachronic spatial data, the interpretation of the parameters is more complex because the effects of policies extend to the neighboring locations. Summary measures have been suggested in the literature for the cross-sectional spatial linear regression models and spatial panel data models. In this article, we compare three procedures for testing the significance of impact measures in the spatial linear regression models. These procedures include (i) the estimating equation approach, (ii) the classical delta method, and (iii) the simulation method. In a Monte Carlo study, we compare the finite sample properties of these procedures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01600176
Volume :
43
Issue :
1/2
Database :
Academic Search Index
Journal :
International Regional Science Review
Publication Type :
Academic Journal
Accession number :
141679902
Full Text :
https://doi.org/10.1177/0160017619826264