Back to Search Start Over

Solid‐state synthesis of multicomponent equiatomic rare‐earth oxides.

Authors :
Pianassola, Matheus
Loveday, Madeline
McMurray, Jake W.
Koschan, Merry
Melcher, Charles L.
Zhuravleva, Mariya
Source :
Journal of the American Ceramic Society. Apr2020, Vol. 103 Issue 4, p2908-2918. 11p. 2 Diagrams, 6 Charts, 4 Graphs.
Publication Year :
2020

Abstract

Phase formation in multicomponent rare‐earth oxides is determined by a combination of composition, sintering atmosphere, and cooling rate. Polycrystalline ceramics comprising various combinations of Ce, Gd, La, Nd, Pr, Sm, and Y oxides in equiatomic proportions were synthesized using solid‐state sintering. The effects of composition, sintering atmosphere, and cooling rate on phase formation were investigated. Single cubic or monoclinic structures were obtained with a slow cooling of 3.3°C/min, confirming that rare‐earth oxides follow a different structure stabilization process than transition metal high‐entropy oxides. In an oxidizing atmosphere, both Ce and Pr induce a cubic structure, while only Ce plays that role in an inert or reducing atmosphere. Samples without Ce or Pr develop a single monoclinic structure. The structures formed at initial synthesis may be converted to a different one, when the ceramics are annealed in an additional atmosphere. Phase evolution of a five‐cation composition was also studied as a function of sintering temperature. The binary oxides used as raw materials completely dissolve into a single cubic structure at 1450°C in air. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00027820
Volume :
103
Issue :
4
Database :
Academic Search Index
Journal :
Journal of the American Ceramic Society
Publication Type :
Academic Journal
Accession number :
141541596
Full Text :
https://doi.org/10.1111/jace.16971