Back to Search
Start Over
Lemniscate convexity of generalized Bessel functions.
- Source :
-
Studia Scientiarum Mathematicarum Hungarica . Dec2019, Vol. 56 Issue 4, p404-419. 16p. - Publication Year :
- 2019
-
Abstract
- Sufficient conditions on associated parameters p, b and c are obtained so that the generalized and "normalized" Bessel function up(z) = up,b,c(z) satisfies the inequalities ∣(1 + (zu″p(z)/u′p(z)))2 − 1∣ < 1 or ∣((zup(z))′/up(z))2 − 1∣ < 1. We also determine the condition on these parameters so that − (4 (p + (b + 1) / 2) / c) u p ' (x) ≺ 1 + z . Relations between the parameters μ and p are obtained such that the normalized Lommel function of first kind hμ,p(z) satisfies the subordination 1 + (z h μ , p ' ' (z) / h μ , q ' (z)) ≺ 1 + z . Moreover, the properties of Alexander transform of the function hμ,p(z) are discussed. [ABSTRACT FROM AUTHOR]
- Subjects :
- *BESSEL functions
*DISEASE complications
*HANKEL functions
Subjects
Details
- Language :
- English
- ISSN :
- 00816906
- Volume :
- 56
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- Studia Scientiarum Mathematicarum Hungarica
- Publication Type :
- Academic Journal
- Accession number :
- 141510113
- Full Text :
- https://doi.org/10.1556/012.2019.56.4.1445