Back to Search
Start Over
Utility of a public-available artificial intelligence in diagnosis of polypoidal choroidal vasculopathy.
- Source :
-
Graefe's Archive of Clinical & Experimental Ophthalmology . Jan2020, Vol. 258 Issue 1, p17-21. 5p. - Publication Year :
- 2020
-
Abstract
- Purpose: To investigate the feasibility of training an artificial intelligence (AI) on a public-available AI platform to diagnose polypoidal choroidal vasculopathy (PCV) using indocyanine green angiography (ICGA). Methods: Two methods using AI models were trained by a data set including 430 ICGA images of normal, neovascular age-related macular degeneration (nvAMD), and PCV eyes on a public-available AI platform. The one-step method distinguished normal, nvAMD, and PCV images simultaneously. The two-step method identifies normal and abnormal ICGA images at the first step and diagnoses PCV from the abnormal ICGA images at the second step. The method with higher performance was used to compare with retinal specialists and ophthalmologic residents on the performance of diagnosing PCV. Results: The two-step method had better performance, in which the precision was 0.911 and the recall was 0.911 at the first step, and the precision was 0.783, and the recall was 0.783 at the second step. For the test data set, the two-step method distinguished normal and abnormal images with an accuracy of 1 and diagnosed PCV with an accuracy of 0.83, which was comparable to retinal specialists and superior to ophthalmologic residents. Conclusion: In this evaluation of ICGA images from normal, nvAMD, and PCV eyes, the models trained on a public-available AI platform had comparable performance to retinal specialists for diagnosing PCV. The utility of public-available AI platform might help everyone including ophthalmologists who had no AI-related resources, especially those in less developed areas, for future studies. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0721832X
- Volume :
- 258
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Graefe's Archive of Clinical & Experimental Ophthalmology
- Publication Type :
- Academic Journal
- Accession number :
- 141003694
- Full Text :
- https://doi.org/10.1007/s00417-019-04493-x