Back to Search Start Over

A discrete element model to predict anatomy of the psoas muscle and path of the tendon: Design implications for total hip arthroplasty.

Authors :
Audenaert, E.A.
Khanduja, V.
Bauwens, C.
Van Hoof, T.
Pattyn, C.
Steenackers, G.
Source :
Clinical Biomechanics. Dec2019, Vol. 70, p186-191. 6p.
Publication Year :
2019

Abstract

The accurate estimation of a muscle's line of action is a fundamental requirement in computational modelling. We present a novel anatomical muscle wrapping technique and demonstrate its clinical use on the evaluation of the Psoas muscle mechanics in hip arthroplasty. A volume preserving, spring model to parameterize muscle anatomy changes during motion is presented. Validation was performed by a CT scan of a cadaver model in multiple positions. The predicted psoas musculotendinous path was compared with the actual imaging findings. In a second stage, psoas kinetics were compared between a conventional versus a resurfacing hip arthroplasty during gait. Anatomy prediction error was found to be 2.12 mm on average (SD 1.34 mm). When applied to psoas mechanics during walking, the muscle was found to wrap predominantly around the femoral head providing a biomechanically efficient and nearly constant moment arm for flexion during the entire gait cycle. However, this advantage was found to be lost in small diameter hip arthroplasty designs resulting in an important mechanical disadvantage. The moment arm for flexion, was on average 36% (SD 0.03%) lower in the small diameter conventional hip arthroplasty as compared to the large diameter head of the hip resurfacing and this difference was highly significant. (p < 0.001). Despite the shortcomings of an "in silico" and cadaveric study, our findings are in accordance with previous clinical and gait studies. Furthermore, the findings are strongly in favour of large diameter implant designs, warranting their further development and optimisation. • A discrete element model for volumetric muscle wrapping of the psoas is presented. • Accuracy of anatomy predictions was 2.12 mm (SD 1.34 mm). • Small diameter total hip arthroplasty present a significant loss in psoas flexion moment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02680033
Volume :
70
Database :
Academic Search Index
Journal :
Clinical Biomechanics
Publication Type :
Academic Journal
Accession number :
140376434
Full Text :
https://doi.org/10.1016/j.clinbiomech.2019.09.004