Back to Search Start Over

Signaling pathways in cytoskeletal responses to plasma membrane depolarization in corneal endothelial cells.

Authors :
Evans, Frances
Hernández, Julio A.
Chifflet, Silvia
Source :
Journal of Cellular Physiology. Mar2020, Vol. 235 Issue 3, p2947-2962. 16p.
Publication Year :
2020

Abstract

In previous work, we reported that plasma membrane potential depolarization (PMPD) provokes cortical F‐actin remodeling in bovine corneal endothelial (BCE) cells in culture, which eventually leads to the appearance of intercellular gaps. In kidney epithelial cells it has been shown that PMPD determines an extracellular‐signal‐regulated kinase (ERK)/Rho‐dependent increase in diphosphorylated myosin light chain (ppMLC). The present study investigated the signaling pathways involved in the response of BCE cells to PMPD. Differently to renal epithelial cells, we observed that PMPD leads to a decrease in monophosphorylated MLC (pMLC) without affecting diphosphorylated MLC. Also, that the pMLC reduction is a consequence of cyclic adenosine 3′,5′‐monophosphate (cAMP)/protein kinase A (PKA) activation. In addition, we found evidence that the cAMP increase mostly depends on soluble adenylyl cyclase activity. Inhibition of this enzyme reduces the effect of PMPD on the cAMP rise, F‐actin remodeling, and pMLC decrease. No changes in phosho‐ERK were observed, although we could determine that RhoA undergoes activation. Our results suggested that active RhoA is not involved in the intercellular gap formation. Overall, the findings of this study support the view that, differently to renal epithelial cells, in BCE cells PMPD determines cytoskeletal reorganization via activation of the cAMP/PKA pathway. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219541
Volume :
235
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Cellular Physiology
Publication Type :
Academic Journal
Accession number :
140159447
Full Text :
https://doi.org/10.1002/jcp.29200