Back to Search Start Over

Testing magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare.

Authors :
Zhu, X.
Wiegelmann, T.
Source :
Astronomy & Astrophysics / Astronomie et Astrophysique. Nov2019, Vol. 631, p1-8. 8p.
Publication Year :
2019

Abstract

Context. On the sun, the magnetic field vector is measured routinely solely in the photosphere. By using these photospheric measurements as a boundary condition, we developed magnetohydrostatic (MHS) extrapolation to model the solar atmosphere. The model makes assumptions about the relative importance of magnetic and non-magnetic forces. While the solar corona is force-free, this is not the case with regard to the photosphere and chromosphere. Aims. The model has previously been tested with an exact equilibria. Here we present a more challenging and more realistic test of our model with the radiative magnetohydrodynamic simulation of a solar flare. Methods. By using the optimization method, the MHS model computes the magnetic field, plasma pressure and density self-consistently. The nonlinear force-free field (NLFFF) and gravity-stratified atmosphere along the field line are assumed as the initial conditions for optimization. Results. Compared with the NLFFF, the MHS model provides an improved magnetic field not only in magnitude and direction, but also in magnetic connectivity. In addition, the MHS model is capable of recovering the main structure of plasma in the photosphere and chromosphere. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00046361
Volume :
631
Database :
Academic Search Index
Journal :
Astronomy & Astrophysics / Astronomie et Astrophysique
Publication Type :
Academic Journal
Accession number :
139927455
Full Text :
https://doi.org/10.1051/0004-6361/201936433