Back to Search Start Over

ATP-sensitive K+ channels and mitochondrial permeability transition pore mediate effects of hydrogen sulfide on cytosolic Ca2+ homeostasis and insulin secretion in β-cells.

Authors :
Lu, Aizhu
Chu, Cencen
Mulvihill, Erin
Wang, Rui
Liang, Wenbin
Source :
Pflügers Archiv: European Journal of Physiology. Dec2019, Vol. 471 Issue 11/12, p1551-1564. 14p.
Publication Year :
2019

Abstract

Hydrogen sulfide (H2S) is endogenously produced in pancreatic ß cells and its level is elevated in diabetes. Here, we report that H2S affects insulin secretion via two mechanisms that converge on cytosolic free Ca2+ ([Ca2+]i), a key mediator of insulin exocytosis. Cellular calcium imaging, using Fura-2 or Fluo-4, showed that exposure of INS-1E cells to H2S (30–100 μM) reduced both [Ca2+]i levels (by 21.7 ± 2.3%) and oscillation frequency (p < 0.01, n = 4). Consistent with a role of plasma membrane KATP channels (plasma-KATP), the effects of H2S on [Ca2+]i were blocked by gliclazide (a blocker of plasma-KATP channels), but were mimicked by diazoxide (an activator of plasma-KATP channels). Surprisingly, when Ca2+ entry via plasma membrane was inhibited using Ca2+-free external solutions, H2S increased [Ca2+]i by 39.7 ± 3.6% suggesting Ca2+ release from intracellular stores. H2S-induced [Ca2+]i increases were abolished by either FCCP (which depletes Ca2+ stored in mitochondria) or cyclosporine A (an inhibitor of mitochondrial permeability transition pore, mPTP) suggesting that H2S induces Ca2+ release from mitochondria. Measurement of mitochondrial membrane potential (MMP) suggested that H2S causes MMP depolarization, which was blocked by cyclosporine A. Finally, insulin measurements by ELISA indicated that H2S decreased insulin release from INS-1E cells, but after plasma membrane Ca2+ entry was blocked by nifedipine, H2S-induced mitochondrial Ca2+ release is able to increase insulin release. Together, our results indicate that H2S has dual effects on insulin release suggesting that, with different metabolic conditions, H2S may differentially modulate the insulin release from pancreatic ß cells and play a role in ß cell dysfunction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00316768
Volume :
471
Issue :
11/12
Database :
Academic Search Index
Journal :
Pflügers Archiv: European Journal of Physiology
Publication Type :
Academic Journal
Accession number :
139902838
Full Text :
https://doi.org/10.1007/s00424-019-02325-9