Back to Search Start Over

Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass.

Authors :
Angst, Gerrit
Mueller, Carsten W.
Prater, Isabel
Angst, Šárka
Frouz, Jan
Jílková, Veronika
Peterse, Francien
Nierop, Klaas G. J.
Source :
Communications Biology. 11/28/2019, Vol. 2 Issue 1, pN.PAG-N.PAG. 1p.
Publication Year :
2019

Abstract

Earthworms co-determine whether soil, as the largest terrestrial carbon reservoir, acts as source or sink for photosynthetically fixed CO2. However, conclusive evidence for their role in stabilising or destabilising soil carbon has not been fully established. Here, we demonstrate that earthworms function like biochemical reactors by converting labile plant compounds into microbial necromass in stabilised carbon pools without altering bulk measures, such as the total carbon content. We show that much of this microbial carbon is not associated with mineral surfaces and emphasise the functional importance of particulate organic matter for long-term carbon sequestration. Our findings suggest that while earthworms do not necessarily affect soil organic carbon stocks, they do increase the resilience of soil carbon to natural and anthropogenic disturbances. Our results have implications for climate change mitigation and challenge the assumption that mineral-associated organic matter is the only relevant pool for soil carbon sequestration. Gerrit Angst et al. report the function of earthworms as biochemical reactors in soil by converting labile plant-derived carbon into stabilized microbial-derived carbon. They show that earthworms increase the resilience of carbon in soil to natural and anthropogenic disturbances. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993642
Volume :
2
Issue :
1
Database :
Academic Search Index
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
139902695
Full Text :
https://doi.org/10.1038/s42003-019-0684-z