Back to Search
Start Over
Basic properties of generalized down–up algebras
- Source :
-
Journal of Algebra . Sep2004, Vol. 279 Issue 1, p402-421. 20p. - Publication Year :
- 2004
-
Abstract
- We introduce a large class of infinite dimensional associative algebras which generalize down–up algebras. Let <f>K</f> be a field and fix <f>f∈K[x]</f> and <f>r,s,γ∈K</f>. Define <f>L=L(f,r,s,γ)</f> to be the algebra generated by <f>d,u</f> and <f>h</f> with defining relations: Included in this family are Smith''s class of algebras similar to <f>U(sl2)</f>, Le Bruyn''s conformal <f>sl2</f> enveloping algebras and the algebras studied by Rueda. The algebras <f>L</f> have Gelfand–Kirillov dimension 3 and are Noetherian domains if and only if <f>rs≠0</f>. We calculate the global dimension of <f>L</f> and, for <f>rs≠0</f>, classify the simple weight modules for <f>L</f>, including all finite dimensional simple modules. Simple weight modules need not be classical highest weight modules. [Copyright &y& Elsevier]
- Subjects :
- *MATHEMATICS
*ASSOCIATIVE algebras
*ALGEBRA
*AZUMAYA algebras
Subjects
Details
- Language :
- English
- ISSN :
- 00218693
- Volume :
- 279
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Journal of Algebra
- Publication Type :
- Academic Journal
- Accession number :
- 13958316
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2004.05.009