Back to Search Start Over

Experimental Simulation of the Self-Trapping Mechanism for CO2 Sequestration into Marine Sediments.

Authors :
Kim, Hak-Sung
Cho, Gye-Chun
Source :
Minerals (2075-163X). Oct2019, Vol. 9 Issue 10, p579. 1p.
Publication Year :
2019

Abstract

CO2 hydrates are ice-like solid lattice compounds composed of hydrogen-bonded cages of water molecules that encapsulate guest CO2 molecules. The formation of CO2 hydrates in unconsolidated sediments significantly decreases their permeability and increases their stiffness. CO2 hydrate-bearing sediments can, therefore, act as cap-rocks and prevent CO2 leakage from a CO2-stored layer. In this study, we conducted an experimental simulation of CO2 geological storage into marine unconsolidated sediments. CO2 hydrates formed during the CO2 liquid injection process and prevented any upward flow of CO2. Temperature, pressure, P-wave velocity, and electrical resistance were measured during the experiment, and their measurement results verified the occurrence of the self-trapping effect induced by CO2 hydrate formation. Several analyses using the experimental results revealed that CO2 hydrate bearing-sediments have a considerable sealing capacity. Minimum breakthrough pressure and maximum absolute permeability are estimated to be 0.71 MPa and 5.55 × 10−4 darcys, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2075163X
Volume :
9
Issue :
10
Database :
Academic Search Index
Journal :
Minerals (2075-163X)
Publication Type :
Academic Journal
Accession number :
139415854
Full Text :
https://doi.org/10.3390/min9100579