Back to Search Start Over

707. QPX9003: Pharmacology of a Novel Polymyxin in Mice and Rats.

Authors :
Sabet, Mojgan
Tarazi, Ziad
Parkinson, Jonathan
Roberts, Kade
Thompson, Philip
Nation, Roger
Velkov, Tony
Hecker, Scott
Lomovskaya, Olga
Dudley, Michael
Li, Jian
Grifith, David
Source :
Open Forum Infectious Diseases. 2019 Supplement, Vol. 6, pS319-S319. 1p.
Publication Year :
2019

Abstract

Background Currently available polymyxins are limited by toxicity and poor efficacy at tolerated doses. We have developed a new series of polymyxin derivatives with improved safety profiles and in vitro potency against major MDR bacteria. The following describes studies on the in vivo antimicrobial activity and toxicity of QPX9003 in mice and rats. Methods Mouse studies. The minimum lethal dose (MLD by IV bolus) and nephrotoxicity (6 IP doses administered 2 hours apart) of QPX9003 and polymyxin B (PMB) were determined in Swiss mice. For the neutropenic mouse thigh infection using A. baumannii , Swiss mice were infected with ~106 CFU/thigh. Doses were administered IP at various intervals starting 2-hour post-infection and continued over 24 hours. Rat studies. For the rat lung infection model, Sprague-Dawley rats were infected with ~107 CFU/lung. QPX9003 and PMB were administered IV every 4 hours starting 2 hours post-infection and continued over 24 hours. Bacteria. For both infection models, animals were infected with A. baumannii AB1016 (QPX9003 MIC of 0.5 mg/L and PMB MIC of 1.0 mg/L). Untreated control groups were sacrificed at the start of treatment and both untreated and treated groups were sacrificed 24 hours after the start of treatment, infected tissues harvested, homogenized, and plated to determine colony counts. Results QPX9003 had reduced acute toxicity and nephrotoxicity compared with PMB in mice. QPX9003 showed better bacterial killing of A. baumannii than PMB at similar plasma exposures in both the mouse thigh model (−0.41 vs. +0.83 log CFU/thigh) and rat lung infection model (−1.10 vs. +1.44 log CFU/lung). Conclusion QPX9003 was less acutely toxic, less nephrotoxic, and was more efficacious in mouse and rat infection models compared with PMB. QPX9003 is a promising new polymyxin. (This work was supported in part by federal funds from the National Institutes of Allergy and Infectious Diseases [R01AI098771], and the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority (BARDA), under OTA number HHSO100201600026C). Disclosures All authors: No reported disclosures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23288957
Volume :
6
Database :
Academic Search Index
Journal :
Open Forum Infectious Diseases
Publication Type :
Academic Journal
Accession number :
139395010
Full Text :
https://doi.org/10.1093/ofid/ofz360.775