Back to Search
Start Over
Preferential Small Intestine Homing and Persistence of CD8 T Cells in Rhesus Macaques Achieved by Molecularly Engineered Expression of CCR9 and Reduced Ex Vivo Manipulation.
- Source :
-
Journal of Virology . Nov2019, Vol. 93 Issue 21, p1-21. 21p. - Publication Year :
- 2019
-
Abstract
- Adoptive cell transfer (ACT) is a powerful experimental approach to directly study T-cell-mediated immunity in vivo. In the rhesus macaque AIDS virus model, infusing simian immunodeficiency virus (SIV)-infected animals with CD8 T cells engineered to express anti-SIV T-cell receptor specificities enables direct experimentation to better understand antiviral T-cell immunity in vivo. Limiting factors in ACT experiments include suboptimal trafficking to, and poor persistence in, the secondary lymphoid tissues targeted by AIDS viruses. Previously, we redirected CD8 T cells to B-cell follicles by ectopic expression of the CXCR5 homing protein. Here, we modify peripheral blood mononuclear cell (PBMC)-derived CD8 T cells to express the CCR9 chemokine receptor, which induces preferential homing of the engineered cells to the small intestine, a site of intense early AIDS virus replication and pathology in rhesus macaques. Additionally, we increase in vivo persistence and overall systemic distribution of infused CD8 T cells, especially in secondary lymphoid tissues, by minimizing ex vivo culture/manipulation, thereby avoiding the loss of CD28/CD95 central memory T cells by differentiation in culture. These proof-of-principle results establish the feasibility of preferentially localizing PBMC-derived CD8 T cells to the small intestine and enables the direct experimental ACT-based assessment of the potential role of the quality and timing of effective antiviral CD8 T-cell responses to inhibit viral infection and subsequent replication in small intestine CD4 T cells. More broadly, these results support the engineered expression of homing proteins to direct CD8 T cells to target tissues as a means for both experimental and potential therapeutic advances in T-cell immunotherapies, including cancer. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0022538X
- Volume :
- 93
- Issue :
- 21
- Database :
- Academic Search Index
- Journal :
- Journal of Virology
- Publication Type :
- Academic Journal
- Accession number :
- 139244073
- Full Text :
- https://doi.org/10.1128/JVI.00896-19