Back to Search Start Over

Robust Optimization of Industrial Process Operation Parameters Based on Data-Driven Model and Parameter Fluctuation Analysis.

Authors :
Li, Taifu
Liao, Zhiqiang
Source :
Mathematical Problems in Engineering. 10/8/19, p1-9. 9p.
Publication Year :
2019

Abstract

The fluctuation of industrial process operation parameters will severely influence the production process. How to find the robust optimal process operation parameters is an effective method to address this problem. In this paper, a scheme based on data-driven model and variable fluctuation analysis is proposed to obtain the robust optimal operation parameters of industrial process. The data-driven modelling method: multivariate Gaussian process regression (MGPR) based on Bayesian statistical learning theory can map the process operation parameters to objective performance with the flexibility in nonparameter inferring and the self-adaptiveness to determinate hyperparameters. According to the minimum variance criterion, the parameter fluctuation analysis can be performed through multiobjective evolutionary algorithm based on the MGPR model. To analyze the robustness influence of a single parameter, cross validation is applied to evaluate the model output with 2% fluctuation. After that, the robust optimal process operation parameters can be obtained and applied to guide the production. The effectiveness and reliability of the proposed method have been verified with the hydrogen cyanide production process and compared with other model methods and single objective optimization method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
139001326
Full Text :
https://doi.org/10.1155/2019/2474909