Back to Search Start Over

Effects of Wind Wave Spectra on Radar Backscatter From Sea Surface at Different Microwave Bands: A Numerical Study.

Authors :
Xie, Dengfeng
Chen, Kun-Shan
Yang, Xiaofeng
Source :
IEEE Transactions on Geoscience & Remote Sensing. Sep2019, Vol. 57 Issue 9, p6325-6334. 10p.
Publication Year :
2019

Abstract

Wind wave spectrum describes the quasi-periodic nature of the ocean surface oscillations and plays an indispensable role in the study of microwave electromagnetic scattering from sea surface. A reliable spectrum model suitable for radar cross section (RCS) predictions at different radar frequencies is desired. This paper evaluated the performances of five common spectrum models (i.e., Fung spectrum, Durden–Vesecky spectrum, Apel spectrum, Elfouhaily spectrum, and the newest version of Hwang spectrum, H18) on the normalized radar backscattering cross section (NRBCS) simulations based on advanced integral equation model (AIEM) at L-, C-, X-, and Ku-bands versus incidence angle, wind direction, and wind speed by comparing with the model and measured data for validation. These results indicate no single wave spectrum of them is satisfying for all the four radar frequencies, e.g., Apel and H18 spectra are better for L- and C-bands, Apel spectrum for X-band, and Elfouhaily and H18 spectra for Ku-band. Given this, three average composite spectrum models are constructed using different spectral models (i.e., all five spectra, Apel + Elfouhaily + H18, and Apel + H18) to simulate NRBCSs, similar to that of the individual spectrum model. It is concluded that the combination of Apel and H18 spectra overall performs best among the individual one and other composited spectra in like-polarized NRBCSs versus incidence angles, wind directions, and wind speeds, for wind speed greater than 30 m/s where the combination of the five spectra work well at Ku-band. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
57
Issue :
9
Database :
Academic Search Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
138938056
Full Text :
https://doi.org/10.1109/TGRS.2019.2905558