Back to Search Start Over

Outflowing gas in a compact ionization cone in the Seyfert 2 galaxy ESO 153-G20.

Authors :
Soto-Pinto, Pamela
Nagar, Neil M
Finlez, Carolina
Ramakrishnan, Venkatessh
Muñoz-Vergara, Dania
Slater, Roy
Humire, Pedro K
Storchi-Bergmann, Thaisa
Lena, Davide
Kraemer, Steven B
Fischer, Travis C
Schmitt, Henrique R
Riffel, Rogemar A
Schnorr-Müller, Allan
Robinson, Andrew
Crenshaw, D Michael
Elvis, Martin S
Source :
Monthly Notices of the Royal Astronomical Society. 11/1/2019, Vol. 489 Issue 3, p4111-4124. 14p.
Publication Year :
2019

Abstract

We present two-dimensional ionized gas and stellar kinematics in the inner 1.4 × 1.9 kpc2 of the Seyfert 2 galaxy ESO 153-G20 obtained with the Gemini-South/Gemini multi-object spectrograph integral field unit (GMOS-IFU) at a spatial resolution of ~250 pc and spectral resolution of 36 km s−1. Strong [O  iii ], Hα, [N  ii ] and [S  ii ] emission lines are detected over the entire field of view. The stellar kinematics trace circular rotation with a projected velocity amplitude of ±96 km s−1, a kinematic major axis in position angle of 11°, and an average velocity dispersion of 123 km s−1. To analyse the gas kinematics, we used aperture spectra, position–velocity diagrams and single/double Gaussian fits to the emission lines. All lines show two clear kinematic components: a rotating component that follows the stellar kinematics, and a larger-dispersion component, close to the systemic velocity (from which most of the [O  iii ] emission comes), mainly detected to the south-west. We interpret this second component as gas outflowing at ∼400 km s−1 in a compact (300 pc) ionization cone with a half-opening angle ≤40°. The counter-cone is probably obscured behind a dust lane. We estimate a mass outflow rate of 1.1 M |$\odot$| yr−1, 200 times larger than the estimated accretion rate on to the supermassive black hole, and a kinetic to radiative power ratio of 1.7 × 10−3. Bar-induced perturbations probably explain the remaining disturbances observed in the velocity field of the rotating gas component. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00358711
Volume :
489
Issue :
3
Database :
Academic Search Index
Journal :
Monthly Notices of the Royal Astronomical Society
Publication Type :
Academic Journal
Accession number :
138933867
Full Text :
https://doi.org/10.1093/mnras/stz2333