Back to Search Start Over

Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process.

Authors :
Reynolds, Derrick J.
Hertel, Klemens J.
Source :
PLoS ONE. 10/3/2019, Vol. 14 Issue 10, p1-21. 21p.
Publication Year :
2019

Abstract

Alternative splicing diversifies mRNA transcripts in human cells. While the spliceosome pairs exons with a high degree of accuracy, the rates of rare aberrant and non-canonical pre-mRNA splicing have not been evaluated at the nucleotide level to determine the quantity and identity of these events across splice junctions. Using ultra-deep sequencing the frequency of aberrant and non-canonical splicing events for three splice junctions flanking exon 7 of SMN1 were determined at single nucleotide resolution. After correction for background noise introduced by PCR amplification and sequencing steps, pre-mRNA splicing was shown to maintain a low overall rate of aberrant and non-canonically spliced events. Several previously unannotated splicing events across 3 exon|intron junctions in SMN1 were identified. Mutations within SMN exon 7 were shown to affect splicing fidelity by modulating RNA secondary structures, by altering the binding site of regulatory proteins and by changing the 5’ splice site strength. Mutations also create a truncated SMN1 exon 7 through the introduction of a de novo non-canonical 5’ splice site. The results from the ultra-deep sequencing approach highlight the impressive fidelity of pre-mRNA splicing and demonstrate that the immediate sequence context around splice sites is the main driving force behind non-canonical splice site pairing. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
10
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
138927760
Full Text :
https://doi.org/10.1371/journal.pone.0223132