Back to Search Start Over

High rates of primary production in structurally complex forests.

Authors :
Gough, Christopher M.
Atkins, Jeff W.
Fahey, Robert T.
Hardiman, Brady S.
Source :
Ecology. Oct2019, Vol. 100 Issue 10, pN.PAG-N.PAG. 1p.
Publication Year :
2019

Abstract

Structure–function relationships are central to many ecological paradigms. Chief among these is the linkage of net primary production (NPP) with species diversity and canopy structure. Using the National Ecological Observatory Network (NEON) as a subcontinental‐scale research platform, we examined how temperate‐forest NPP relates to several measures of site‐level canopy structure and tree species diversity. Novel multidimensional canopy traits describing structural complexity, most notably canopy rugosity, were more strongly related to site NPP than were species diversity measures and other commonly characterized canopy structural features. The amount of variation in site‐level NPP explained by canopy rugosity alone was 83%, which was substantially greater than that explained individually by vegetation area index (31%) or Shannon's index of species diversity (30%). Forests that were more structurally complex, had higher vegetation‐area indices, or were more diverse absorbed more light and used light more efficiently to power biomass production, but these relationships were most strongly tied to structural complexity. Implications for ecosystem modeling and management are wide ranging, suggesting structural complexity traits are broad, mechanistically robust indicators of NPP that, in application, could improve the prediction and management of temperate forest carbon sequestration. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00129658
Volume :
100
Issue :
10
Database :
Academic Search Index
Journal :
Ecology
Publication Type :
Academic Journal
Accession number :
138896299
Full Text :
https://doi.org/10.1002/ecy.2864