Back to Search Start Over

Three-dimensional multi-phase model of PEM fuel cell coupled with improved agglomerate sub-model of catalyst layer.

Authors :
Xie, Biao
Zhang, Guobin
Xuan, Jin
Jiao, Kui
Source :
Energy Conversion & Management. Nov2019, Vol. 199, pN.PAG-N.PAG. 1p.
Publication Year :
2019

Abstract

• An improved agglomerate sub-model of catalyst layer is developed. • Oxygen local transport resistance is clarified with three individual parts. • Effects of Pt loading and Pt particle dispersion are considered. • The CL agglomerate sub-model is incorporated into 3D PEM fuel cell model. • Fine channel geometry helps improve gas distribution and cell performance. An improved agglomerate sub-model of catalyst layer (CL) involving actual agglomerate size and oxygen local transport characteristics is developed and incorporated into a three-dimensional (3D) multi-phase model of proton exchange membrane (PEM) fuel cell. This makes it capable to consider the effect of platinum (Pt) loading on oxygen transport and fuel cell performance more accurately. Oxygen local transport resistance near the catalyst surface is divided into three parts caused by liquid water blockage, ionomer coverage and Pt/carbon agglomeration, respectively. The resistances caused by ionomer coverage and Pt/carbon agglomeration are two major sources of oxygen local transport resistance. They have opposite variation trends as Pt loading changes. However, the ionomer resistance increases dramatically when Pt loading is lower than 0.1 mg cm−2 because of the much harder transport process through a relatively heavier ionomer coating. The simulation results agree with the experimental data reasonably under different cathode Pt loadings (from 0.3 to 0.025 mg cm−2), for both polarization curves and local transport resistance. In addition, a transport dominance parameter is defined to judge whether the concentration loss predominates the electrochemical reaction. A value greater than 10% can be seen as a symbol of local oxygen starvation. Using this model, fine channel geometry with extremely small channel and rib widths is investigated, and the highest net output power in this study is corresponding to 0.2 and 0.6 mm for channel (rib) width and height. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01968904
Volume :
199
Database :
Academic Search Index
Journal :
Energy Conversion & Management
Publication Type :
Academic Journal
Accession number :
138853673
Full Text :
https://doi.org/10.1016/j.enconman.2019.112051