Back to Search Start Over

A Soft and Transparent Visuo-Haptic Interface Pursuing Wearable Devices.

Authors :
Yun, Sungryul
Park, Suntak
Park, Bongje
Ryu, Semin
Jeong, Seung Mo
Kyung, Ki-Uk
Source :
IEEE Transactions on Industrial Electronics. Jan2020, Vol. 67 Issue 1, p717-724. 8p.
Publication Year :
2020

Abstract

In this paper, we report an integrated soft and transparent visuo-haptic interface, which is compatible with flexible devices and wearable gadgets. The visuo-haptic interface is composed of a touch-sensitive visual display based on polymer waveguides and a dielectric elastomer microactuators (DEMA) array. The touch-sensitive visual display, formed via continuative multistep photolithography, is a multilayered structure with a tactile-sensing layer stacked onto a visual-imaging layer. The dual-functional layer is thin (total thickness: <200 μm) and transparent (transmittance: as high as 90%). The DEMA forming a unit cell of the array is designed as multiple three-dimensional structures with silver nanowires (AgNWs) compliant electrode. When an electric voltage is applied across compliant electrodes formed on the sides, individual microactuators expand directly in an upward direction. Thanks to the vertically deformable design, the DEMA produces programmable large normal forces up to about 30 times of thresholds at a localized area. An output force response of the DEMA is reversible, fast (<1 ms delay), durable (output force degradation: <8% during a million cycles), and large enough to be used in human tactile interfaces. Due to the synergetic benefits from the functional layers, the visuo-haptic interface allows demonstration of programmable tactile response with visual information while being intimately attached on human skin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
67
Issue :
1
Database :
Academic Search Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
138481409
Full Text :
https://doi.org/10.1109/TIE.2019.2898620