Back to Search Start Over

Photoperiodic changes in adiposity increase sensitivity of female Siberian hamsters to systemic VGF derived peptide TLQP-21.

Authors :
Lisci, Carlo
Lewis, Jo E.
Daniel, Zoe C. T. R.
Stevenson, Tyler J.
Monnier, Chloe
Marshall, Hayley J.
Fowler, Maxine
Ebling, Francis J. P.
Ferri, Gian-Luca
Cocco, Cristina
Jethwa, Preeti H.
Source :
PLoS ONE. 8/29/2019, Vol. 14 Issue 8, p1-14. 14p.
Publication Year :
2019

Abstract

TLQP-21, a peptide encoded by the highly conserved vgf gene, is expressed in neuroendocrine cells and has been the most prominent VGF-derived peptide studied in relation to control of energy balance. The recent discovery that TLQP-21 is the natural agonist for the complement 3a receptor 1 (C3aR1) has revived interest in this peptide as a potential drug target for obesity. We have investigated its function in Siberian hamsters (Phodopus sungorus), a rodent that displays natural seasonal changes in body weight and adiposity as an adaptation to survive winter. We have previously shown that intracerebroventricular administration of TLQP-21 reduced food intake and body weight in hamsters in their long-day fat state. The aim of our current study was to determine the systemic actions of TLQP-21 on food intake, energy expenditure and body weight, and to establish whether adiposity affected these responses. Peripheral infusion of TLQP-21 (1mg/kg/day for 7 days) in lean hamsters exposed to short photoperiods (SP) reduced cumulative food intake in the home cage (p<0.05), and intake when measured in metabolic cages (P<0.01). Energy expenditure was significantly increased (p<0.001) by TLQP-21 infusion, this was associated with a significant increase in uncoupling protein 1 mRNA in brown adipose tissue (BAT) (p<0.05), and body weight was significantly reduced (p<0.05). These effects of systemic TLQP-21 treatment were not observed in hamsters exposed to long photoperiod (LP) with a fat phenotype. C3aR1 mRNA and protein were abundantly expressed in the hypothalamus, brown and white adipose tissue in hamsters, but changes in expression cannot explain the differential response to TLQP-21 in lean and fat hamsters. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
8
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
138330865
Full Text :
https://doi.org/10.1371/journal.pone.0221517