Back to Search
Start Over
Engineered cells for selective detection and remediation of Hg2+ based on transcription factor MerR regulated cell surface displayed systems.
- Source :
-
Biochemical Engineering Journal . Oct2019, Vol. 150, pN.PAG-N.PAG. 1p. - Publication Year :
- 2019
-
Abstract
- • The biosystems engineered based on MerR regulated surface displayed output apparatus. • The biosensor could sense Hg2+ in the range of 0.1–10,000 nM with high selectivity. • The biosensor permitted a rapid, visual, and on-site detection of bioavailable Hg2+. • The bioremediation system could continuously reduce Hg2+ in wide concentration. • The engineered cells were superior to most bio-adsorbents in bioremediation of Hg2+. Mercury pollution has been one of the most serious environmental problems today. The detection and remediation of mercury contamination are of special concern due to its nondegradable nature, bioaccumulation effect, and significant toxicity. In this research, the whole-cell based detection and remediation systems for Hg2+ were engineered based on the cell surface engineering technique and transcriptional activation mechanism of metalloprotein MerR. The engineered biodetection system showed high selectivity for Hg2+ over other metal ions with the detection limit as low as 0.1 nM. It also permitted a rapid, visual, and on-site detection of bioavailable Hg2+ for large-scale water samples with simple processes. The engineered bioremediation system, which was more efficient than the most current biosystems with limited adsorption capacities, could continuously reduce mercury contamination in wide concentration by transforming highly toxic Hg2+ to volatile and much less deleterious Hg0 with extraordinary selectivity. In addition, the bioremediation system could perform function in the absence of extra inductive agent and showed an increased protection of cells against Hg2+ biotoxicity. By fully imitating and utilizing the microorganisms, the engineered biochemical systems have great potential in the practical application of detecting and remediating Hg2+ in the contaminated aquatic systems. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1369703X
- Volume :
- 150
- Database :
- Academic Search Index
- Journal :
- Biochemical Engineering Journal
- Publication Type :
- Academic Journal
- Accession number :
- 138099819
- Full Text :
- https://doi.org/10.1016/j.bej.2019.107289