Back to Search Start Over

SNV discovery and functional candidate gene identification for milk composition based on whole genome resequencing of Holstein bulls with extremely high and low breeding values.

Authors :
Lin, Shan
Zhang, Hongyan
Hou, Yali
Liu, Lin
Li, Wenhui
Jiang, Jianping
Han, Bo
Zhang, Shengli
Sun, Dongxiao
Source :
PLoS ONE. 8/1/2019, Vol. 14 Issue 8, p1-18. 18p.
Publication Year :
2019

Abstract

We have sequenced the whole genomes of eight proven Holstein bulls from the four half-sib or full-sib families with extremely high and low estimated breeding values (EBV) for milk protein percentage (PP) and fat percentage (FP) using Illumina re-sequencing technology. Consequently, 2.3 billion raw reads were obtained with an average effective depth of 8.1×. After single nucleotide variant (SNV) calling, total 10,961,243 SNVs were identified, and 57,451 of them showed opposite fixed sites between the bulls with high and low EBVs within each family (called as common differential SNVs). Next, we annotated the common differential SNVs based on the bovine reference genome, and observed that 45,188 SNVs (78.70%) were located in the intergenic region of genes and merely 11,871 SNVs (20.67%) located within the protein-coding genes. Of them, 13,099 common differential SNVs that were within or close to protein-coding genes with less than 5 kb were chosen for identification of candidate genes for milk compositions in dairy cattle. By integrated analysis of the 2,657 genes with the GO terms and pathways related to protein and fat metabolism, and the known quantitative trait loci (QTLs) for milk protein and fat traits, we identified 17 promising candidate genes: ALG14, ATP2C1, PLD1, C3H1orf85, SNX7, MTHFD2L, CDKN2D, COL5A3, FDX1L, PIN1, FIG4, EXOC7, LASP1, PGS1, SAO, GPLD1 and MGEA5. Our findings provided an important foundation for further study and a prompt for molecular breeding of dairy cattle. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
8
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
137836739
Full Text :
https://doi.org/10.1371/journal.pone.0220629