Back to Search Start Over

Enzyme Production-Based Approach for Determining the Function of Microorganisms within a Community.

Authors :
Nakamura, Kohei
Haruta, Shin
Huong Lan Nguyen
Ishii, Masaharu
Igarashi, Yasuo
Source :
Applied & Environmental Microbiology. Jun2004, Vol. 70 Issue 6, p3329-3337. 9p. 2 Charts, 12 Graphs.
Publication Year :
2004

Abstract

The functions of specific microorganisms in a microbial community were investigated during the composting process. Cerusibacillus quisquiliarum strain BLxT and Bacillus thermoamylovorans strain BTa were isolated and characterized in our previous studies based on their dominance in the composting system. Strain BLxT degrades gelatin, while strain BTa degrades starch. We hypothesized that these strains play roles in gelatinase and amylase production, respectively. The relationship between changes in the abundance ratios of each strain and those of each enzyme activity during the composting process was examined to address this hypothesis. The increase in gelatinase activity in the compost followed a dramatic increase in the abundance ratio of strain BLxT. Zymograph analysis demonstrated that the pattern of active gelatinase bands from strain BLxT was similar to that from the compost. Gelatinases from both BLxT and compost were partially purified and compared. Homologous N-terminal amino acid sequences were found in one of the gelatinases from strain BLxT and that of compost. These results indicate strain BLxT produces gelatinases during the composting process. Meanwhile, the increase in the abundance ratio of strain BTa was not concurrent with that of amylase activity in the compost. Moreover, the amylase activity pattern of strain BTa on the zymogram was different from that of the compost sample. These results imply that strain BTa may not produce amylases during the composting process. To our knowledge, this is the first report demonstrating that the function ora specific microorganism is directly linked to a function in the community, as determined by culture-independent and enzyme-level approaches. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00992240
Volume :
70
Issue :
6
Database :
Academic Search Index
Journal :
Applied & Environmental Microbiology
Publication Type :
Academic Journal
Accession number :
13723438
Full Text :
https://doi.org/10.1128/AEM.70.6.3329-3337.2004