Back to Search Start Over

Three-Dimensional Simulation And Design Sensitivity Analysis Of The Injection Molding Process.

Authors :
Ilinca, Florin
Hétu, Jean-François
Ghosh, S.
Castro, J.C.
Lee, J.K.
Source :
AIP Conference Proceedings. 2004, Vol. 712 Issue 1, p2068-2073. 6p.
Publication Year :
2004

Abstract

Getting the proper combination of different process parameters such as injection speed, melt temperature and mold temperature is important in getting a part that minimizes warpage and has the desired mechanical properties. Very often a successful design in injection molding comes at the end of a long trial and error process. Design Sensitivity Analysis (DSA) can help molders improve the design and can produce substantial investment savings in both time and money. This paper investigates the ability of the sensitivity analysis to drive an optimization tool in order to improve the quality of the injected part. The paper presents the solution of the filling stage of the injection molding process by a 3D finite element solution algorithm. The sensitivity of the solution with respect to different process parameters is computed using the continuous sensitivity equation method. Solutions are shown for the non-isothermal filling of a rectangular plate with a polymer melt behaving as a non-Newtonian fluid. The paper presents the equations for the sensitivity of the velocity, pressure and temperature and their solution by finite elements. Sensitivities of the solution with respect to the injection speed, the melt and mold temperatures are shown. © 2004 American Institute of Physics [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0094243X
Volume :
712
Issue :
1
Database :
Academic Search Index
Journal :
AIP Conference Proceedings
Publication Type :
Conference
Accession number :
13720660
Full Text :
https://doi.org/10.1063/1.1766839