Back to Search
Start Over
Sobolev Spaces on Quasi-Kähler Complex Varieties.
- Source :
-
Chinese Annals of Mathematics . Jul2019, Vol. 40 Issue 4, p599-612. 14p. - Publication Year :
- 2019
-
Abstract
- If V is an irreducible quasi-Kähler complex variety and E is a vector bundle over reg(V), the author proves that W01,2(reg(V), E) = W1,2(reg(V), E), and that for dimℂ reg(V) > 1, the natural inclusion W1,2(reg(V), E) ↪ L2(reg(V), E) is compact, the natural inclusion W 1 , 2 (reg (V) , E) ↪ L 2 v v − 1 (reg (V) , E) is continuous. [ABSTRACT FROM AUTHOR]
- Subjects :
- *SOBOLEV spaces
*KAHLERIAN manifolds
*VECTOR bundles
Subjects
Details
- Language :
- English
- ISSN :
- 02529599
- Volume :
- 40
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- Chinese Annals of Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 137000949
- Full Text :
- https://doi.org/10.1007/s11401-019-0154-4