Back to Search
Start Over
Comparison of vineyard evapotranspiration estimates from surface renewal using measured and modelled energy balance components in the GRAPEX project.
- Source :
-
Irrigation Science . May2019, Vol. 37 Issue 3, p333-343. 11p. - Publication Year :
- 2019
-
Abstract
- Surface renewal (SR) is a biometeorological technique that uses high frequency air temperature measurements above a crop surface to estimate sensible heat flux (H). The H derived from SR is then combined with net radiation (Rn) and ground heat flux (G) measurements to estimate latent heat flux (LE) as the residual of an energy balance equation. Recent advances in SR theory enabled its use beyond research settings, and led to the development of an inexpensive, stand-alone SR system for use in commercial agricultural settings. However, these commercial applications require replacing expensive net radiometers with clear sky models designed to estimate Rn for the energy balance approach, while also assuming G is zero on a daily basis. The accuracy of substituting Rn measurements with modelled values is unknown, and the assumption of an inconsequential G requires additional testing. Here, we compare the accuracy of the SR derived estimates of H and LE when Rn is either measured directly or modelled, and we compare results to two eddy covariance (EC) LE observations, namely LE measured via EC with an infrared gas analyzer (ECIRGA) and LE solved as a residual in the surface energy balance (ECresid). These measurements were collected at the Grape Remote sensing Atmospheric Profile & Evapotranspiration eXperiment (GRAPEX) conducted over a vineyard within the Lodi, CA wine growing region. LE from SR using tower Rn data measured directly onsite was significantly correlated with LE from ECresid and from ECIRGA with a least squares regression slope ~ 1. LE derived with the modelled incoming solar radiation (SWi) and DisALEXI Rn approaches were also significantly correlated with LE from ECresid, but both modelling approaches overestimated LE at higher fluxes. Patterns were similar, but with more scatter for correlations between LE from ECIRGA and LE from SR using either modelled or remotely sensed Rn. Incorporating direct measurements of G had minimal impact on the agreement of several SR approaches and LE from both EC approaches, however, when differences did occur direct measures of G reduced scatter and bias especially for the empirical SR approach. Our results suggest that LE derived from the new SR method requires fairly accurate Rn modelling approaches to obtain reliable and unbiased estimates of daily LE in comparison to measured LE using EC techniques. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03427188
- Volume :
- 37
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Irrigation Science
- Publication Type :
- Academic Journal
- Accession number :
- 136694144
- Full Text :
- https://doi.org/10.1007/s00271-018-00618-y