Back to Search Start Over

Efficient approaches to convert Coniochaeta hoffmannii lipids into biodiesel by in-situ transesterification.

Authors :
Ertuğrul Karatay, Sevgi
Demiray, Ekin
Dönmez, Gönül
Source :
Bioresource Technology. Aug2019, Vol. 285, p121321-121321. 1p.
Publication Year :
2019

Abstract

• The highest lipid accumulation of C. hoffmannii was obtained as 52.0%. • The maximum total C16 and C18 FAME rate were detected as 96.3%. • The first report about usage of C. hoffmannii lipids for biodiesel production. • Using carrot pomace for biolipid production is a promising approach. • Lignocellulosic materials have the highest energy return on investment value. Coniochaeta hoffmannii was isolated from soils contaminated with biscuit factory wastes showed the maximum lipid accumulation capacity in the study. Lipid production was optimized in terms of pH, carrot pomace loading, nitrogen type and amount, incubation time. Solvent, alcohol type and catalyst concentration, dried/wet biomass concentration, reaction approaches and time were optimized for lipid extraction and transesterification. The highest lipid accumulation was found as 52.0% at pH 4 in the presence of 10% carrot pomace, 0.5 g/L cheese whey at the end of the 48 h incubation. The maximum total C16 and C18 FAME rates were detected at the 25 °C, in the presence of 4 g/L dried C. hoffmannii biomass, methanol and 3% NaOH by using the in-situ transesterification process at the end of the 0.5 h as 96.3%. This is the first report about the usage of C. hoffmannii lipids obtained from carrot pomace for sustainable biodiesel production. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09608524
Volume :
285
Database :
Academic Search Index
Journal :
Bioresource Technology
Publication Type :
Academic Journal
Accession number :
136676356
Full Text :
https://doi.org/10.1016/j.biortech.2019.121321