Back to Search Start Over

Calibration of low-cost NO2 sensors in an urban air quality network.

Authors :
van Zoest, Vera
Osei, Frank B.
Stein, Alfred
Hoek, Gerard
Source :
Atmospheric Environment. Aug2019, Vol. 210, p66-75. 10p.
Publication Year :
2019

Abstract

Low-cost air quality sensors measuring air quality at fine spatio-temporal resolutions, typically suffer from sensor drift and interference. Field calibration is typically performed at one location, while little is known about the spatial transferability of correction factors. We evaluated three calibration methods using a year of hourly nitrogen dioxide (NO 2) observations from low-cost sensors, collocated at two sites with a conventional monitor as reference: (1) an iterative Bayesian approach for daily estimation of the parameters in a multiple linear regression model, (2) a daily updated correction factor and (3) a correction factor updated only when concentrations are uniformly low. We compared the performance of the calibration methods in terms of temporal stability, spatial transferability, and sensor specificity. We documented drift within the 1-year period. The correction factor updated under uniformly low concentrations performed poorly. The iterative Bayesian approach and daily correction factor reduced the root mean squared error (RMSE) by 21–46% at the calibration locations, but did not reduce RMSE at the other location. By examining the posterior distributions of the regression coefficients, we found that the poor spatial transferability is consistent with different responses of individual sensors to environmental factors. We conclude that the spatial and temporal variability in the calibration parameters requires them to be updated regularly, including sensor-specific recalibrations. Image 1 • NO2 sensor calibration methods, accounting for drift and interference, were compared. • Calibration parameters were iteratively estimated using INLA. • Correction factors were updated daily and when concentrations were uniformly low. • Sensor differences cause spatio-temporal variability in the calibration parameters. • Calibrating one sensor is not enough; regular sensor-specific calibrations are needed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13522310
Volume :
210
Database :
Academic Search Index
Journal :
Atmospheric Environment
Publication Type :
Academic Journal
Accession number :
136523517
Full Text :
https://doi.org/10.1016/j.atmosenv.2019.04.048