Back to Search
Start Over
Well‐posedness of fractional integro‐differential equations in vector‐valued functional spaces.
- Source :
-
Mathematische Nachrichten . May2019, Vol. 292 Issue 5, p969-982. 14p. - Publication Year :
- 2019
-
Abstract
- We study the well‐posedness of the fractional differential equations with infinite delay (Pα):Dαu(t)=Au(t)+∫−∞ta(t−s)Au(s)ds+∫−∞tb(t−s)Bu(s)ds+f(t),(0≤t≤2π),on Lebesgue–Bochner spaces Lp(T;X) and Besov spaces Bp,qs(T;X), where A and B are closed linear operators on a Banach space X satisfying D(A)∩D(B)≠{0},  α>0 and a,b∈L1(R+). Under suitable assumptions on the kernels a and b, we completely characterize the well‐posedness of (Pα) in the above vector‐valued function spaces on T by using known operator‐valued Fourier multiplier theorems. We also give concrete examples where our abstract results may be applied. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0025584X
- Volume :
- 292
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- Mathematische Nachrichten
- Publication Type :
- Academic Journal
- Accession number :
- 136173244
- Full Text :
- https://doi.org/10.1002/mana.201800104