Back to Search Start Over

Numerical Approximation for Nonlinear Noisy Leaky Integrate-and-Fire Neuronal Model.

Authors :
Sharma, Dipty
Singh, Paramjeet
Agarwal, Ravi P.
Koksal, Mehmet Emir
Source :
Mathematics (2227-7390). Apr2019, Vol. 7 Issue 4, p363. 1p.
Publication Year :
2019

Abstract

We consider a noisy leaky integrate-and-fire (NLIF) neuron model. The resulting nonlinear time-dependent partial differential equation (PDE) is a Fokker-Planck Equation (FPE) which describes the evolution of the probability density. The finite element method (FEM) has been proposed to solve the governing PDE. In the realistic neural network, the irregular space is always determined. Thus, FEM can be used to tackle those situations whereas other numerical schemes are restricted to the problems with only a finite regular space. The stability of the proposed scheme is also discussed. A comparison with the existing Weighted Essentially Non-Oscillatory (WENO) finite difference approximation is also provided. The numerical results reveal that FEM may be a better scheme for the solution of such types of model problems. The numerical scheme also reduces computational time in comparison with time required by other schemes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22277390
Volume :
7
Issue :
4
Database :
Academic Search Index
Journal :
Mathematics (2227-7390)
Publication Type :
Academic Journal
Accession number :
136165704
Full Text :
https://doi.org/10.3390/math7040363