Back to Search Start Over

Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors.

Authors :
Mosolygó, Tímea
Kincses, Annamária
Csonka, Andrea
Tönki, Ádám Szabó
Witek, Karolina
Sanmartín, Carmen
Marć, Małgorzata Anna
Handzlik, Jadwiga
Kieć-Kononowicz, Katarzyna
Domínguez-Álvarez, Enrique
Spengler, Gabriella
Rutledge, Peter J.
Source :
Molecules. 4/15/2019, Vol. 24 Issue 8, p1487-1487. 1p. 5 Charts, 2 Graphs.
Publication Year :
2019

Abstract

Bacterial multidrug resistance is becoming a growing problem for public health, due to the development and spreading of bacterial strains resistant to antimicrobials. In this study, the antibacterial and multidrug resistance reversing activity of a series of seleno-carbonyl compounds has been evaluated. The effects of eleven selenocompounds on bacterial growth were evaluated in Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Chlamydia trachomatis D. The combination effect of compounds with antibiotics was examined by the minimum inhibitory concentration reduction assay. Their efflux pump (EP) inhibitory properties were assessed using real-time fluorimetry. Relative expressions of EP and quorum-sensing genes were studied by quantitative PCR. Results showed that a methylketone selenoester had remarkable antibacterial activity against Gram-positive bacteria and potentiated the activity of oxacillin in MRSA. Most of the selenocompounds showed significant anti-chlamydial effects. The selenoanhydride and the diselenodiester were active inhibitors of the AcrAB-TolC system. Based on these results it can be concluded that this group of selenocompounds can be attractive potential antibacterials and EP inhibitors. The discovery of new derivatives with a significant antibacterial activity as novel selenocompounds, is of high impact in the fight against resistant pathogens. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
24
Issue :
8
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
136112660
Full Text :
https://doi.org/10.3390/molecules24081487