Back to Search Start Over

Quantitative interaction proteomics reveals differences in the interactomes of amyloid precursor protein isoforms.

Authors :
Andrew, Robert J.
Fisher, Kate
Heesom, Kate J.
Kellett, Katherine A. B.
Hooper, Nigel M.
Source :
Journal of Neurochemistry. May2019, Vol. 149 Issue 3, p399-412. 14p.
Publication Year :
2019

Abstract

The generation of the amyloid‐β (Aβ) peptides from the amyloid precursor protein (APP) through sequential proteolysis by β‐ and γ‐secretases is a key pathological event in the initiation and propagation of Alzheimer's disease. Aβ and the transcriptionally active APP intracellular domain are generated preferentially from the APP695 isoform compared to the longer APP751 isoform. As the Aβ and amyloid precursor protein intracellular domain produced from cleavage of APP695 and APP751 are identical we hypothesised that the two isoforms have differences within their interactomes which mediate the differential processing of the two isoforms. To investigate this, we applied a proteomics‐based approach to identify differences in the interactomes of the APP695 and APP751 isoforms. Using stable isotope labelling of amino acids in cell culture and quantitative proteomics, we compared the interactomes of APP695 and APP751 expressed in human SH‐SY5Y cells. Through this approach, we identified enrichment of proteins involved in mitochondrial function, the nuclear pore and nuclear transport specifically in the APP695 interactome. Further interrogation of the APP interactome and subsequent experimental validation (co‐immunoprecipitation and siRNA knockdown) revealed GAP43 as a specific modulator of APP751 proteolysis, altering Aβ generation. Our data indicate that interrogation of the APP interactome can be exploited to identify proteins which influence APP proteolysis and Aβ production in an isoform dependent‐manner. Cover Image for this issue: doi: 10.1111/jnc.14504. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223042
Volume :
149
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Neurochemistry
Publication Type :
Academic Journal
Accession number :
136070786
Full Text :
https://doi.org/10.1111/jnc.14666