Back to Search Start Over

A noniterative reconstruction method for the inverse potential problem with partial boundary measurements.

Authors :
Fernandez, Lucas
Novotny, Antonio A.
Prakash, Ravi
Source :
Mathematical Methods in the Applied Sciences. May2019, Vol. 42 Issue 7, p2256-2278. 23p.
Publication Year :
2019

Abstract

In this paper, a noniterative reconstruction method for solving the inverse potential problem is proposed. The forward problem is governed by a modified Helmholtz equation. The inverse problem consists in the reconstruction of a set of anomalies embedded into a geometrical domain from partial or total boundary measurements of the associated potential. Since the inverse problem is written in the form of an ill‐posed boundary value problem, the idea is to rewrite it as a topology optimization problem. In particular, a shape functional measuring the misfit between the solution obtained from the model and the data taken from the boundary measurements is minimized with respect to a set of ball‐shaped anomalies by using the concept of topological derivatives. It means that the shape functional is expanded asymptotically and then truncated up to the desired order term. The resulting truncated expansion is trivially minimized with respect to the parameters under consideration that leads to a noniterative second order reconstruction algorithm. As a result, the reconstruction process becomes very robust with respect to the noisy data and independent of any initial guess. Finally, some numerical experiments are presented showing the capability of the proposed method in reconstructing multiple anomalies of different sizes and shapes by taking into account complete or partial boundary measurements. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01704214
Volume :
42
Issue :
7
Database :
Academic Search Index
Journal :
Mathematical Methods in the Applied Sciences
Publication Type :
Academic Journal
Accession number :
135688551
Full Text :
https://doi.org/10.1002/mma.5504