Back to Search
Start Over
Lipid-apolipoprotein interactions in amyloid fibril formation and relevance to atherosclerosis.
- Source :
-
BBA - Proteins & Proteomics . May2019, Vol. 1867 Issue 5, p502-507. 6p. - Publication Year :
- 2019
-
Abstract
- Abstract The apolipoprotein family is a set of highly conserved proteins characterized by the presence of amphipathic α-helical sequences that mediate lipid binding. Paradoxically, this family of proteins is also prominent among the proteins known to form amyloid fibrils, characterized by extensive cross-β structure. Several apolipoproteins including apolipoprotein (apo) A-I, apoA-II and apoC-II accumulate in amyloid deposits of atherosclerotic lesions. This review illustrates the role of lipid-apolipoprotein interactions in apolipoprotein folding and aggregation with a specific focus on human apoC-II, a well-studied member of the family. In the presence of high concentrations of micellar lipid mimetics apoC-II adopts a stable and predominantly α-helical structure, similar to other members of the family and presumed to be the structure of apoC-II in circulating plasma lipoproteins. In contrast, lipid-free apoC-II aggregates to form long amyloid fibrils with a twisted ribbon-like morphology. Detailed structural analyses identify a letter G-like conformation as the basic building block within these fibrils. Phospholipids at submicellar concentrations accelerate apoC-II fibril formation by promoting the formation of a discrete tetrameric intermediate. Conversely, several small molecule lipid-mimetics inhibit apoC-II fibril formation at submicellar concentrations, inducing well-defined dimers unable to further aggregate. Finally, low concentrations of phospholipid micelles and bilayers induce the slow formation of amyloid fibrils with distinct rod-like fibril morphology. These studies highlight the diversity of lipid effects on apolipoprotein amyloid formation and reveal a conformational adaptability that could underlie the widespread occurrence of apolipoproteins in amyloid deposits and atheroma. Highlights • Apolipoproteins are prominent in the list of proteins known to form amyloid in vivo. • Lipids alter the rate of formation and final structure of apolipoprotein amyloid. • These effects may play roles in pathology of atherosclerosis and systemic amyloidoses. • We review the complex effects of lipid on amyloid formation by apolipoprotein C-II. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15709639
- Volume :
- 1867
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- BBA - Proteins & Proteomics
- Publication Type :
- Academic Journal
- Accession number :
- 135661171
- Full Text :
- https://doi.org/10.1016/j.bbapap.2018.08.010