Back to Search Start Over

Synchronization and vibratory synchronization transmission of a weakly damped far-resonance vibrating system.

Authors :
Chen, Bang
Xia, Xiao’ou
Wang, Xiaobo
Source :
PLoS ONE. 3/25/2019, Vol. 14 Issue 3, p1-19. 19p.
Publication Year :
2019

Abstract

The self-synchronization of rotors mounted on different vibrating bodies can be easily controlled by adjusting the coupling parameters. To reveal the synchronization characteristics of a weakly damped system with two rotors mounted on different vibrating bodies, we propose a simplified physical model. The topics described in this paper are related to coupling dynamic problems between two vibrating systems. Both synchronization and vibratory synchronization transmission of the system are studied. The coupling mechanism between the two rotors is analyzed to derive the synchronization condition and the stability criterion of the system. The vibration of the system is described by an averaging method that can separate fast motion (high frequency) from slow motion (low frequency). Theoretical research shows that vibration torque is the key factor in balancing the energy distribution between the rotors. Taking the maximum vibration torque (MVT) as a critical parameter, we investigate the synchronization characteristics of the vibrating system in different cases. The curve of the maximum vibration torque (MVT) versus coupling frequency is divided into several parts by the coupling characteristic frequency and the input torque difference between the rotors. Simulations of the system with coupling frequencies from different parts are carried out. For the system with rotational frequencies larger than the natural frequencies, the coupling characteristic frequency or characteristic frequency curve should be considered. When the coupling frequency is close to the characteristic frequency or the vibration state is close to the characteristic frequency curve, self-synchronization of the two rotors can be obtained easily. Under certain conditions when the coupling effect between the rotors is strong enough, the rotors can maintain synchronous rotation even when one of the two motors is shut off after synchronization is achieved, which is called vibratory synchronization transmission. Vibratory synchronization transmission of the system occurs in a new synchronous condition, and the phase difference between the rotors takes on a new value, that is, the system approaches a new synchronization state. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
3
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
135528822
Full Text :
https://doi.org/10.1371/journal.pone.0209703