Back to Search Start Over

Numerical study of compound intake on mixture formation and combustion process in a hydrogen-enriched gasoline Wankel rotary engine.

Authors :
Yang, Jinxin
Ji, Changwei
Wang, Shuofeng
Shi, Cheng
Wang, Du
Ma, Zedong
Yang, Zixuan
Source :
Energy Conversion & Management. Apr2019, Vol. 185, p66-74. 9p.
Publication Year :
2019

Abstract

Highlights • A CFD model of H 2 -gasoline fueled rotary engine was established and validated. • The CFD model was modified by installing the compound intake ports. • The mean in-cylinder pressure and indicated thermal efficiency were increased. • Combining compound intake with HDI obtained a better engine performance. • CO emission was decreased, but NOx emissions were increased. Abstract The compound intake possesses large port area. Applying it in Wankel rotary engine (WRE) could increase volumetric efficiency and reduce pumping loss. To investigate the effect of the compound intake on the mixture formation and combustion process in gasoline WREs with hydrogen port and direct injected (HPI and HDI) enrichment, a three-dimensional computational fluid dynamics (CFD) model was established and validated. Investigation results showed that the peripheral-ported intake flow plays a leading role in the compound-ported WRE. Because the peripheral-ported intake flow has the same direction with the rotor movement, the formation time of mainstream flow field is shortened and the mean flow speed is increased, the flame propagation in the same direction with mainstream flow field is accelerated. Meanwhile, the improvements in volumetric efficiency and quality of in-charged mixtures result in the rise of temperature and pressure at spark timing, which could also improve the initial thermal conditions. Therefore, the compound intake effectively accelerates the combustion process in WRE. In HPI conditions, compared with the side-ported WRE, the peak in-cylinder pressure and indicated thermal efficiency in compound-ported WRE are respectively increased by 4.5% and 3.9%. In HDI conditions, the flame could propagate to the rear combustion chamber and eliminate the unburned zone, the maximum in-cylinder pressure and indicated thermal efficiency in side-ported WRE with HDI are 84.7% and 6.6% higher than those of in side-ported WRE with HPI. At the same time, the compound intake could further increase the in-cylinder pressure and indicated thermal efficiency by 6.8% and 2.5%, respectively. However, the improved combustion performance increases the in-cylinder temperature, which provides a suitable thermal-atmosphere for nitrogen oxide (NO x) formation. The compound intake increases mass fractions of NO x emissions from 0.111% to 0.141% in HPI conditions and those from 0.268% to 0.284% in HDI conditions. Considering the compound intake promotes the combustion characteristics and effectively decreases carbon monoxide (CO) emission from 0.043% to 0.033% in HPI conditions, and from 0.008% to 0.003% in HDI conditions, it is a feasible way to improve the performance of WREs. Especially, combining it with HDI could obtain a better engine performance under low engine speed and part load conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01968904
Volume :
185
Database :
Academic Search Index
Journal :
Energy Conversion & Management
Publication Type :
Academic Journal
Accession number :
135379914
Full Text :
https://doi.org/10.1016/j.enconman.2019.01.083