Back to Search Start Over

Evaluating Potential of Artificial Neural Network and Neuro-Fuzzy Techniques for Global Solar Radiation Prediction in Isfahan, Iran.

Authors :
Taghadomi-Saberi, S.
Razavi, S. J.
Source :
Journal of Agricultural Science & Technology. 2019, Vol. 21 Issue 2, p295-307. 13p.
Publication Year :
2019

Abstract

In this study, two widely used artificial intelligence techniques, i.e. Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS), were applied for global solar radiation (GSR) prediction in Isfahan Province, Iran. Different sets of meteorological data were used as inputs to specify the best set of inputs. Relative humidity and precipitation had an unfavorable effect on radiation prediction, while the number of days, sunshine duration, minimum temperature, maximum temperature, daylight hours and clear-sky radiation were effective parameters to determine GSR. Using the mentioned parameters as inputs, 6-5-1 architecture had the best performance without overtraining. In ANFIS models, ' triangular-shaped' had the highest performance amongst different types of membership functions. Resulted correlation coefficients and errors showed that ANN was generally better than ANFIS for this purpose. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16807073
Volume :
21
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Agricultural Science & Technology
Publication Type :
Academic Journal
Accession number :
135253817