Back to Search Start Over

Interaction of Supplementary Light and CO2 Enrichment Improves Growth, Photosynthesis, Yield, and Quality of Tomato in Autumn through Spring Greenhouse Production.

Authors :
Tonghua Pan
Juanjuan Ding
Gege Qin
Yunlong Wang
Linjie Xi
Junwei Yang
Jianming Li
Jing Zhang
Zhirong Zou
Source :
HortScience. Feb2019, Vol. 54 Issue 2, p246-252. 8p.
Publication Year :
2019

Abstract

During the autumn/spring ''off'' season, yield and quality of tomatoes are often affected by insufficient CO2 and low light in greenhouse production. Although tomato is one of the most widely cultivated vegetables, few studies have investigated the interactive effects of supplementary light and CO2 enrichment on its growth, photosynthesis, yield, and fruit quality in greenhouse production. This study investigates the effects of supplementary light (200 ± 20 mmol·m-2·s-1) and CO2 enrichment (increases to about 800 mmol·mol-1), independently and in combination, on these parameters in autumn through spring tomato production. Compared with tomatoes grown under ambient CO2 concentrations and no supplementary light (CaLn), supplementary light (CaLs) and supplementary light and CO2 enrichment (CeLs) significantly promoted growth and dry weight accumulation. Meanwhile, CO2 enrichment (CeLn) and CaLs significantly improved photosynthetic pigment contents and net photosynthetic (Pn) rates, whereas CeLs further improved these and also increased water use efficiency (WUE). CeLn, CaLs, and CeLs significantly increased single fruit weight by 16.2%, 28.9%, and 36.6%, and yield per plant by 19.0%, 35.6%, and 60.8%, respectively. The effect of supplementary light on these parameters was superior to that of CO2 enrichment. In addition, CaLs and CeLs improved nutritional quality significantly. Taken together, CeLs promoted the greatest yield, WUE, and fruit quality, suggesting it may be a worthwhile practice for offseason tomato cultivation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00185345
Volume :
54
Issue :
2
Database :
Academic Search Index
Journal :
HortScience
Publication Type :
Academic Journal
Accession number :
135203043
Full Text :
https://doi.org/10.21273/HORTSCI13709-18