Back to Search Start Over

Crosstalk between the cytokinin and MAX2 signaling pathways in growth and callus formation of Arabidopsis thaliana.

Authors :
Li, Weiqiang
Nguyen, Kien Huu
Ha, Chien Van
Watanabe, Yasuko
Tran, Lam-Son Phan
Source :
Biochemical & Biophysical Research Communications. Apr2019, Vol. 511 Issue 2, p300-306. 7p.
Publication Year :
2019

Abstract

Abstract Cytokinin (CK) signaling has been shown to play important roles in callus formation and various developmental processes by analyzing different CK-responsive mutants, including the ahk2 ahk3 (AHK , Arabidopsis histidine kinase) double mutant. Recently, an F-box protein, called MAX2 (more axillary growth 2) was identified as a key component regulating many growth and developmental processes through the strigolactone and/or karrikin pathways. However, the function of MAX2 signaling in callus formation, seed size and yield, as well as the effects of its crosstalk with CK signaling on plant growth and development remain elusive. Here, we constructed the triple mutant ahk2 ahk3 max 2 and analyzed the callus formation and various phenotypic traits of all three max2 , ahk2 ahk3 and ahk2 ahk3 max2 mutants along with wild-type (WT) during plant growth and development. We showed that MAX2 acted as a negative regulator of seed size, but positive regulator of callus formation and seed yield albeit at lower degree, as the CK receptor kinases. Importantly, our comparative analyses revealed interactive effects of CK and MAX2 pathways on primary root growth, hypocotyl elongation and shoot branching. However, these two pathways might independently regulate root hair growth, leaf development, leaf senescence, plant height, seed size, seed yield and callus formation. Our findings provide not only evidence for the involvement of MAX2 in regulating callus formation, seed size and seed yield, but also a better understanding of the relationship between CK and MAX2 signaling pathways in many key developmental processes across a plant's life. Highlights • A triple mutant was created for studying crosstalk between cytokinin (CK) and MAX2 pathways. • The two pathways interactively regulate root and hypocotyl growth and shoot branching. • The two pathways independently affect leaf and shoot growth, senescence, seed size and yield. • MAX2 was shown for the first time to act as a positive regulator in callus formation. • Callus formation is independently regulated by CK and MAX2 signaling pathways. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0006291X
Volume :
511
Issue :
2
Database :
Academic Search Index
Journal :
Biochemical & Biophysical Research Communications
Publication Type :
Academic Journal
Accession number :
135033946
Full Text :
https://doi.org/10.1016/j.bbrc.2019.02.038