Back to Search Start Over

Isotopic ratios of Saturn's rings and satellites: Implications for the origin of water and Phoebe.

Authors :
Clark, Roger N.
Brown, Robert H.
Cruikshank, Dale P.
Swayze, Gregg A.
Source :
ICARUS. Mar2019, Vol. 321, p791-802. 12p.
Publication Year :
2019

Abstract

Highlights • Deuterium and carbon 13 are detected in the rings and on satellite surfaces in the Saturn system. • New methods are presented for deriving isotopic ratios from reflectance spectra of solids. • The D/H ratio of the water in Saturn's rings and icy satellites except Phoebe is close to terrestrial bulk Earth values. • Phoebe's D/H is the highest value yet measured in the Solar system implying an origin in the cold outer Solar System beyond Saturn. • Phoebe also has a high 13C/12C much greater than terrestrial, consistent with an origin in the cold outer Solar System. Abstract Isotopic ratios have long been used to learn about physical processes acting over a wide range of geological environments, and in constraining the origin and/or evolution of planetary bodies. We report the spectroscopic detection of deuterium in Saturn's rings and satellites, and use these measurements to determine the (D/H) ratios in their near-surface regions. Saturn's moons, Phoebe and Iapetus, show a strong signature of CO 2 and the 13C component of this molecule is detected and quantified. Large averages of spectra obtained by the Cassini Visual and Infrared Mapping Spectrometer, VIMS, were computed for the rings and icy satellites. The observed intensities of the infrared absorptions in H 2 O and CO 2 and their isotopes were calibrated using laboratory data and radiative transfer models to derive the D/H and 13C/12C ratios. We find that the D/H in Saturn's rings and satellites is close to the Vienna Standard Mean Ocean Water (VSMOW) and bulk Earth (4% lower than VSMOW) value except for Phoebe, which is 8.3 times the VSMOW value. This is the highest value for any Solar-System surface yet measured, and suggests that Phoebe formed from material with a different D/H ratio than the other satellites in the Saturn system. Phoebe's 13C/12C ratio is also unusual: 4.7 times greater than terrestrial, and greater than values measured for the interstellar medium and the galactic center. The high 13C abundance in the CO 2 suggests that Phoebe was never warm enough for the large D/H ratio in its surface to have originated by evaporative fractionation of its water ice (e.g., from heating in the inner Solar System before its eventual capture by Saturn). We also report the detection of a probable O-D stretch absorption due to OD in minerals on Phoebe at 3.62 μm. This absorption is not detected on other Saturnian satellites. Stronger signatures of bound water absorptions are found in the dark material of Iapetus and we report a new detection of bound water at 1.9 μm. The position of this absorption matches that seen in spectra of hydrated iron oxides but does not match absorptions seen in spectra of tholins. Despite the strong bound water signature in the Iapetus dark material, no 3.62 μm OD absorption is seen in the spectra, further indicating the high deuterium level on Phoebe is unusual. As such, it is likely that Phoebe originated in a colder part of the outer Solar System, relative to the prevailing temperatures at Saturn's distance from the Sun. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00191035
Volume :
321
Database :
Academic Search Index
Journal :
ICARUS
Publication Type :
Academic Journal
Accession number :
134821879
Full Text :
https://doi.org/10.1016/j.icarus.2018.11.029