Back to Search
Start Over
Jump-diffusion models with two stochastic factors for pricing swing options in electricity markets with partial-integro differential equations.
- Source :
-
Applied Numerical Mathematics . May2019, Vol. 139, p77-92. 16p. - Publication Year :
- 2019
-
Abstract
- Abstract In this paper we consider the valuation of swing options with the possibility of incorporating spikes in the underlying electricity price. This kind of contracts are modelled as path dependent options with multiple exercise rights. From the mathematical point of view the valuation of these products is posed as a sequence of free boundary problems where two consecutive exercise rights are separated by a time period. Due to the presence of jumps, the complementarity problems are associated with a partial-integro differential operator. In order to solve the pricing problem, we propose appropriate numerical methods based on a Crank–Nicolson semi-Lagrangian method for the time discretization of the differential part of the operator, jointly with the explicit treatment of the integral term by using the Adams–Bashforth scheme and combined with biquadratic Lagrange finite elements for space discretization. In addition, we use an augmented Lagrangian active set method to cope with the early exercise feature. Moreover, we employ appropriate artificial boundary conditions to treat the unbounded domain numerically. Finally, we present some numerical results in order to illustrate the proper behaviour of the numerical schemes. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 01689274
- Volume :
- 139
- Database :
- Academic Search Index
- Journal :
- Applied Numerical Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 134733614
- Full Text :
- https://doi.org/10.1016/j.apnum.2019.01.001