Back to Search Start Over

Personalized Prediction of Acquired Resistance to EGFR-Targeted Inhibitors Using a Pathway-Based Machine Learning Approach.

Authors :
Kim, Young Rae
Kim, Yong Wan
Lee, Suh Eun
Yang, Hye Won
Kim, Sung Young
Source :
Cancers. Jan2019, Vol. 11 Issue 1, p45. 1p.
Publication Year :
2019

Abstract

Epidermal growth factor receptor (EGFR) inhibitors have benefitted cancer patients worldwide, but resistance inevitably develops over time, resulting in treatment failures. An accurate prediction model for acquired resistance (AR) to EGFR inhibitors is critical for early diagnosis and according intervention, but is not yet available due to personal variations and the complex mechanisms of AR. Here, we have developed a novel pipeline to build a meta-analysis-based, multivariate model for personalized pathways in AR to EGFR inhibitors, using sophisticated machine learning algorithms. Surprisingly, the model achieved excellent predictive performance, with a cross-study validation area under curve (AUC) of over 0.9, and generalization performance on independent cohorts of samples, with a perfect AUC score of 1. Furthermore, the model showed excellent transferability across different cancer cell lines and EGFR inhibitors, including gefitinib, erlotinib, afatinib, and cetuximab. In conclusion, our model achieved high predictive accuracy through robust cross study validation, and enabled individualized prediction on newly introduced data. We also discovered common pathway alteration signatures for AR to EGFR inhibitors, which can provide directions for other follow-up studies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20726694
Volume :
11
Issue :
1
Database :
Academic Search Index
Journal :
Cancers
Publication Type :
Academic Journal
Accession number :
134329260
Full Text :
https://doi.org/10.3390/cancers11010045