Back to Search Start Over

Centre-of-mass like superposition of Ornstein–Uhlenbeck processes: A pathway to non-autonomous stochastic differential equations and to fractional diffusion.

Authors :
D'Ovidio, Mirko
Vitali, Silvia
Sposini, Vittoria
Sliusarenko, Oleksii
Paradisi, Paolo
Castellani, Gastone
Pagnini, Gianni
Source :
Fractional Calculus & Applied Analysis. Oct2018, Vol. 21 Issue 5, p1420-1435. 16p.
Publication Year :
2018

Abstract

We consider an ensemble of Ornstein–Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding to this ensemble is statistically equivalent to a process driven by a non-autonomous stochastic differential equation with time-dependent drift and a white noise. In particular, the time scaling and the density function of such variable are driven by the population of timescales and of noise amplitudes, respectively. Moreover, we show that this variable is equivalent in distribution to a randomly-scaled Gaussian process, i.e., a process built by the product of a Gaussian process times a non-negative independent random variable. This last result establishes a connection with the so-called generalized grey Brownian motion and suggests application to model fractional anomalous diffusion in biological systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13110454
Volume :
21
Issue :
5
Database :
Academic Search Index
Journal :
Fractional Calculus & Applied Analysis
Publication Type :
Academic Journal
Accession number :
134300923
Full Text :
https://doi.org/10.1515/fca-2018-0074