Back to Search Start Over

Research on Online Capacity Estimation of Power Battery Based on EKF-GPR Model.

Authors :
Zhou, Di
Yin, Hongtao
Xie, Wei
Fu, Ping
Lu, Wenbin
Source :
Journal of Chemistry. 1/23/2019, p1-9. 9p.
Publication Year :
2019

Abstract

Capacity degrading over repeated charge/discharge cycles is a main parameter for evaluating battery performance, which is commonly used for determining the state of health. However, it is difficult to measure the available capacity because it requires the normal operation to be terminated and a long time-consuming detection process. This study presents an online available-capacity estimation method by combining extended Kalman filter (EKF) with Gaussian process regression (GPR) for the daily partial charge data of lithium-ion batteries. First, GPR is used to establish an empirical model of the time-voltage curve in the constant current charge cases. Second, by analyzing the characteristics of the charge curve, the daily piecewise partially charge data are registered with the piecewise complete charge data to update GPR model and preestimate the equivalent complete charge time. On this basis, the equivalent complete charge time is refined by EKF. Furthermore, the available capacity estimation of the battery with constant current charge processes under different aging conditions is achieved. It is verified by experiments that the estimated error can be controlled within 5% when the actual available capacity is greater than 90% of the initial capacity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20909063
Database :
Academic Search Index
Journal :
Journal of Chemistry
Publication Type :
Academic Journal
Accession number :
134246251
Full Text :
https://doi.org/10.1155/2019/5327319