Back to Search Start Over

Dosage sensitivity of X-linked genes in human embryonic single cells.

Authors :
Yang, Jian-Rong
Chen, Xiaoshu
Source :
BMC Genomics. 1/14/2019, Vol. 20 Issue 1, p1-9. 9p. 1 Chart, 2 Graphs.
Publication Year :
2019

Abstract

Background: During the evolution of mammalian sex chromosomes, the degeneration of Y-linked homologs has led to a dosage imbalance between X-linked and autosomal genes. The evolutionary resolution to such dosage imbalance, as hypothesized by Susumu Ohno fifty years ago, should be doubling the expression of X-linked genes. Recent studies have nevertheless shown that the X to autosome expression ratio equals ~ 1 in haploid human parthenogenetic embryonic stem (pES) cells and ~ 0.5 in diploid pES cells, suggesting no doubled expression for X-linked genes and refuting Ohno's hypothesis. Results: Here, by reanalyzing an RNA-seq-based single-cell transcriptome dataset of human embryos, we found that from the 8-cell stage until the time-point just prior to implantation, the expression levels of X-linked genes are not two-fold upregulated in male cells and gradually decrease from two-fold in female cells. Additional analyses of gene expression noise further suggest that the dosage sensitivity of X-linked genes is weaker than that of autosomal genes in differentiated female cells, which contradicts a key assumption in Ohno's hypothesis, that most X-linked genes are dosage sensitive. Moreover, the dosage-sensitive housekeeping genes are preferentially located on autosomes, implying selection against X-linkage for dosage-sensitive genes. Conclusions: We observed dosage imbalance between X-linked and autosomal genes, as well as relatively high expression noise from X-linked genes. These results collectively suggest that X-linked genes are less dosage sensitive than autosomal genes, putting one primary assumption of Ohno's hypothesis in question. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712164
Volume :
20
Issue :
1
Database :
Academic Search Index
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
134124557
Full Text :
https://doi.org/10.1186/s12864-019-5432-8