Back to Search
Start Over
Photoreduction of Carbon Dioxide to Methanol over Copper Based Zeolitic Imidazolate Framework-8: A New Generation Photocatalyst.
- Source :
-
Catalysts (2073-4344) . Dec2018, Vol. 8 Issue 12, p581. 1p. - Publication Year :
- 2018
-
Abstract
- The efficient reduction of CO2 into valuable products such as methanol, over metal-organic frameworks (MOFs) based catalyst, has received much attention. The photocatalytic reduction is considered the most economical method due to the utilization of solar energy. In this study, Copper (II)/Zeolitic Imidazolate Framework-8 (Cu/ZIF-8) catalysts were synthesized via a hydrothermal method for photocatalytic reduction of CO2 to methanol. The synthesized catalysts were characterized by X-ray Photoelectron Spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM) coupled with Energy Dispersive X-ray (EDX), Ultraviolet-visible (UV-vis) spectroscopy, and X-Ray Diffraction (XRD). The host ZIF-8, treated with 2 mmol copper prepared in 2M ammonium hydroxide solution showed the highest photocatalytic activity. The crystal structures of ZIF-8 and 2Cu/ZIF-8N2 catalysts were observed as cubic and orthorhombic, respectively and the XPS analysis confirmed the deposition of Cu (II) ions over ZIF-8 surface among all the prepared catalysts. The orthorhombic structure, nano-sized crystals, morphology and Cu loading of the 2Cu/ZIF-8N2 catalyst were the core factors to influence the photocatalytic activity. The yield of Methanol was found to be 35.82 µmol/L·g after 6 h of irradiations on 2Cu/ZIF-8N2 catalyst in the wavelength range between 530–580 nm. The copper-based ZIF-8 catalyst has proven as an alternative approach for the economical photocatalytic reduction of CO2 to CH3OH. [ABSTRACT FROM AUTHOR]
- Subjects :
- *PHOTOREDUCTION
*CARBON dioxide
*COPPER compounds
Subjects
Details
- Language :
- English
- ISSN :
- 20734344
- Volume :
- 8
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- Catalysts (2073-4344)
- Publication Type :
- Academic Journal
- Accession number :
- 134075508
- Full Text :
- https://doi.org/10.3390/catal8120581